

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

### Chemical Absorption of Carbon Dioxide into Aqueous Colloidal Silica Solution with Diethanolamine

Sang-Wook Park<sup>a</sup>; Byoung-Sik Choi<sup>a</sup>; Jae-Wook Lee<sup>b</sup>

<sup>a</sup> Division of Chemical Engineering, Pusan National University, Busan, Korea <sup>b</sup> Department of Chemical Engineering, Sogang University, Seoul, Korea

**To cite this Article** Park, Sang-Wook , Choi, Byoung-Sik and Lee, Jae-Wook(2006) 'Chemical Absorption of Carbon Dioxide into Aqueous Colloidal Silica Solution with Diethanolamine', *Separation Science and Technology*, 41: 14, 3265 – 3278

**To link to this Article:** DOI: 10.1080/01496390600894848

URL: <http://dx.doi.org/10.1080/01496390600894848>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## Chemical Absorption of Carbon Dioxide into Aqueous Colloidal Silica Solution with Diethanolamine

**Sang-Wook Park, Byoung-Sik Choi**

Division of Chemical Engineering, Pusan National University,  
Busan, Korea

**Jae-Wook Lee**

Department of Chemical Engineering, Sogang University, Seoul, Korea

**Abstract:** The chemical absorption rate ( $R_A$ ) of  $\text{CO}_2$  was measured into the aqueous nanometer sized colloidal silica solution of 0–31 wt% and diethanolamine of 0–2 kmol/m<sup>3</sup> in the flat-stirred vessel with the impeller size of 0.034 m and its agitation speed of 50 rev/min at 25°C and 0.101 MPa, and compared with the values estimated from the model based on the film theory accompanied by chemical reaction. The value of the volumetric liquid-side mass transfer coefficient ( $k_{L,a}$ ) of  $\text{CO}_2$ , which was used to estimate the value of  $R_A$ , was obtained by the empirical correlation formula presenting the relationship between  $k_{L,a}$  and the rheological behavior of the aqueous colloidal silica solution. The value of  $R_A$  in the aqueous colloidal silica solution was decreased by the reduction of  $k_{L,a}$  due to the elasticity of the solution.

**Keywords:** Chemical absorption, carbon dioxide, colloidal silica, viscoelastic liquid, diethanolamine

### INTRODUCTION

In multiphase systems appearing in agitated reactors, gas-liquid mass transfer may be rate-determining step for the overall process. Therefore, the knowledge of gas-liquid mass transfer rates characterized by the volumetric

Received 10 April 2006, Accepted 6 June 2006

Address correspondence to Sang-Wook Park, Division of Chemical Engineering, Pusan National University, Busan 609-735, Korea. E-mail: swpark@pusan.ac.kr

liquid-phase mass transfer coefficient ( $k_L a$ ) is needed for a reliable design of such reactors and many researchers (1) have studied how to enhance the mass transfer rate.

The techniques for the enhancement of heat and mass transfer performance are generally categorized into several methods; the mechanical treatment, the chemical treatment, the acoustic (2) and electromagnetic (3) treatments, and the application of nano technology. The selection of heat transfer mode such as falling film type and bubble type is a kind of mechanical treatment. The representative chemical treatment is the addition of a surfactant into the working fluids. The addition of the surfactant causes interfacial turbulence, which leads to a higher heat and mass transfer performance (4). In the recent decade, the nanofluid becomes one of the most attractive heat transfer media due to the development of nano technology. Nanofluid is the solid/liquid mixture in which nano-sized particles ( $d_p < 100$  nm) are suspended evenly in the base liquid. It is well known (5) that the nanofluid can enhance the effective thermal conductivity and affects the heat transfer characteristic of the fluid. One suggested four potential mechanisms (5); Brownian motion of the particles, liquid layering at liquid/particle interface, nature of heat transport in nano particles, and effects of nano particle clustering. To the best of our knowledge, the studies on the effect of nanofluid on the mass transfer performance have not been conducted although some researchers (5) have actively studied the heat transfer enhancement by nanofluid. Kim et al. (6) measured the absorption rate of  $\text{NH}_3$  in nanofluid of  $\text{Cu}$ ,  $\text{CuO}$ , and  $\text{Al}_2\text{O}_3$  of 50 nm in water using a bubble absorber, and they showed that the absorption rate increased with increasing concentration of nano particles.

However, in the slurry or colloidal systems, the effects of milli or micro particles on the absorption have been studied by many researchers (7–15). Absorption of gas into slurries constituted by fine particles is fairly common as a means of intensifying gas absorption rates and even for improving selectivity in the case of multiple gaseous solutes. Improvement of the mass transfer rate by fine particles was explained by the mechanism of the grazing effect, first discovered by Kars and Best (7). Zhou et al. (15) reviewed the effect of fine particles on multiphase mass transfer and concluded that the finer the particles in the slurries were, the stronger the influence was, and they reported that the mass transfer coefficient ( $k_L$ ) might be increased or reduced via changing film thickness with turbulence or a lowering of the diffusion coefficient of gas. The reduction of the solubility and the diffusivity of dissolved gas in slurries with increasing volume fraction of slurries may be due to the decrease (9) in the portion of continuous phase in the slurries. As increasing of volume fraction of slurries, the covered gas-liquid interface by the fine particles can hinder diffusion of gas and hence reduce  $k_L$ . If the nanofluid was treated as the pseudohomogeneous phase (13), in which the diffusion of the solutes as well as the gas-liquid interfacial

area are assumed to be unaltered, the hydrodynamics of the nanofluid might be used to predict the gas absorption rate in the nanofluid/gas system.

The dependence of shear stress on shear rate of a fluid in hydrodynamic system is different according to the type of the fluid, i.e., Newtonian or non-Newtonian fluid, and the mass transfer coefficient ( $k_L$ ) of a solute in one phase is in inverse proportion to the viscosity of its phase due to the inverse proportion of viscosity to diffusivity. Deborah number (De), which is one of the rheological properties and defined as the ratio of the characteristic material time to the characteristic process time, is taken into account to correlate the mass transfer coefficient in the non-Newtonian fluid with that in the Newtonian one.

Only use of the apparent viscosity of the non-Newtonian fluids was not sufficient to obtain a unified correlation for  $k_{LA}$  values. Due to the complexities of gas absorption in the non-Newtonian media, the correlations obtained by these studies were limited to just a few kinds of non-Newtonian fluids such as Carbopol, carboxymethylcellulose (CMC), polyacrylate (PA), polyethylene oxide (PEO), polyacrylamide (PAA), and polyisobutylene (PIB) solutions. If a considerable reduction of  $k_{LA}$  is due to the viscoelasticity of the aqueous solution (16, 17), then the extent to which data for the viscoelastic solution such as PAA deviate from those for the inelastic solution such as CMC should correlate with some measure of the solution's elasticity. The dimensionless number such as De, which relates the elastic properties with the process parameters, is used to correlate  $k_{LA}$  with properties of non-Newtonian liquids. Unified correlations have been proposed for  $k_{LA}$  in Newtonian as well as non-Newtonian solutions by introducing the dimensionless term such as  $(1 + n_1 De^{n_2})^{n_3}$ , which are listed in Table 1. As shown in Table 1, values of in the dimensionless group are different one another.

Park et al. presented the effect of elasticity of polyisobutylene (PIB) (20) in the benzene solution of polybutene (PB) and PIB on the absorption rate of

**Table 1.** Coefficients of dimensionless group for gas-liquid mass transfer correlation

| Investigator             | $n_1$  | $n_2$ | $n_3$  | Substance | Contactor       |
|--------------------------|--------|-------|--------|-----------|-----------------|
| Nakanoh and Yoshida (17) | 0.13   | 0.55  | -1     | CMC, PAA  | Bubble column   |
| Yagi and Yoshida (18)    | 2      | 0.5   | -0.67  | CMC, PA   | Agitated vessel |
| Ranade and Ulbrecht (19) | 100    | 1     | -0.67  | CMC, PAA  | Stirred tank    |
| Park et al. (20)         | 100    | 1     | -0.42  | PB, PIB   | Agitated vessel |
| Park et al. (21)         | 2461.3 | 1     | -0.274 | PB, PIB   | Agitated vessel |
| Park et al. (22)         | 54.7   | 1     | -0.45  | PAA       | Agitated vessel |
| Park et al. (23)         | 8.33   | 1.31  | 1      | PEO       | Agitated vessel |
| Park et al. (24)         | 39.4   | 1     | 0.43   | Silica    | Agitated vessel |

CO<sub>2</sub>, and that (21) in w/o emulsion composed of aqueous solution as dispersed phase and benzene solution of PB and PIB as continuous phase in an agitation vessel. They showed that PIB accelerated the absorption rate of CO<sub>2</sub>. Also, the effect of PAA (22) and PEO (23) in an aqueous solution on the absorption rate of CO<sub>2</sub> were investigated. The polymers used in their papers act as accelerators of the absorption rate of CO<sub>2</sub> in the non-Newtonian viscoelastic liquid based on the same viscosity of the solution.

There is little information about the effect of rheological properties of nano-sized particles in aqueous phase on physical and chemical absorption of gas in non-Newtonian liquid, then, it is worthwhile to investigate the rheological behavior of nano-sized particles in the absorption of CO<sub>2</sub>.

In this study, the absorption rate of CO<sub>2</sub> was measured into aqueous nano-sized colloidal silica solution with diethanoleamine(DEA) to observe the effect of elasticity of the solution on the chemical absorption rate of CO<sub>2</sub>, and compared with the theoretical value, which was estimated from the model based on the film theory accompanied by chemical reaction using the k<sub>La</sub>, which was obtained by the empirical equation (24) for k<sub>La</sub> of CO<sub>2</sub> in aqueous nano-sized colloidal silica solution.

## THEORY

The problem to be considered is that a gaseous species A (CO<sub>2</sub>) dissolves into the liquid phase, and then, reacts irreversibly with species B(DEA) according to



where R represents the functional groups on the secondary amine.

The stoichiometric coefficients ( $\nu$ ) in Eq. (1) for DEA was obtained from the reference (25) and its value was 2.

Species B is a nonvolatile solute, which has been dissolved into the liquid phase prior to its introduction into the gas absorber. It is assumed that gas phase resistance to absorption is negligible by using pure species A, and thus the concentration of species A at the gas-liquid corresponds to equilibrium with the partial pressure of species A in the bulk gas phase.

The chemical reaction of Eq. (1) is assumed to be second-order as follows:

$$r_A = k_2 C_A C_B \quad (2)$$

Under the assumptions mentioned above, the mass balances of species A and B from the film theory with chemical reaction are given as

$$D_A \frac{\partial^2 C_A}{\partial z^2} = k_2 C_A C_B \quad (3)$$

$$D_B \frac{\partial^2 C_B}{\partial z^2} = \nu k_2 C_A C_B \quad (4)$$

Boundary and conditions to be imposed are

$$z = 0, C_A = C_{Ai}, \frac{dC_B}{dz} = 0 \quad (5)$$

$$z = z_L, C_A = 0, C_B = C_{Bo} \quad (6)$$

Eq. (3)–(6) are put into the dimensionless form as follows:

$$\frac{\partial^2 a}{\partial x^2} = Mab \quad (7)$$

$$\frac{\partial^2 b}{\partial x^2} = \nu r q ab \quad (8)$$

$$x = 0; a = 1, \frac{db}{dx} = 0 \quad (9)$$

$$x = 1; 1a = 0, b = 1 \quad (10)$$

where  $M = D_A k_2 C_{Bo} / k_L^2$ ,  $a = C_A / C_{Ai}$ ,  $b = C_B / C_{Bo}$ ,  $x = z / z_L$ ,  $q = \nu C_{Ai} / C_{Bo}$ ,  $r = D_A / D_B$ .

The enhancement factor ( $\beta$ ) here defined as the ratio of molar flux with chemical reaction to that without chemical reaction is described as follows:

$$\beta = -\left. \frac{da}{dx} \right|_{x=0} \quad (11)$$

The absorption rate( $R_A$ ) of CO<sub>2</sub> with chemical reaction can be predicted as follows:

$$R_A = \beta R_{Ao} = \beta k_L a C_{Ai} V_L \quad (12)$$

where  $R_{Ao}$  is the absorption rate of CO<sub>2</sub> without chemical reaction.

## EXPERIMENTAL

### Chemicals

All chemicals in this study were reagent grade, and used without further purification. Purity of both CO<sub>2</sub> and N<sub>2</sub> was more than 99.9%. Ludox HS-40 suspension(Aldrich chemical company, U.S.A.) having a 40% w/w solid content(silica density 2200 kg/m<sup>3</sup>) was used. The average particle radius, the specific surface area, and PH at 298 K are 12 nm, 220 m<sup>2</sup>/g, 9.8, respectively, as indicated by the manufacturer. It was reported from Aldrich materials science catalog that the Ludox products are not used as an adsorbent. An

aqueous solution of colloidal silica was made by diluting Ludox HS-40 with distilled water and neutralized with aqueous diluted HCl to remove the chemical reaction with CO<sub>2</sub>.

### Absorption Rate of CO<sub>2</sub>

The gas-liquid contactor used was a stirred tank made of glass (10.2 cm inside diameter, 15.1 cm in height) having a planar unbroken gas-liquid interface; it was operated continuously with respect to the gas and batch-wise with respect to the liquid phase. Four equally spaced vertical baffles, each one-tenth of the vessel diameter in width, were attached to the internal wall of the vessel. The contact area between the gas and the liquid was measured as  $8.047 \times 10^{-3} \text{ m}^2$ . The liquid phase was agitated using an agitator driven by a 1/4 Hp variable speed motor without agitation in gas phase, because it was pure CO<sub>2</sub> gas. A straight impeller (3.4 cm length, 1.7 cm width, and 0.5 cm thickness) was used as the liquid phase agitator; it was located at the middle position of the liquid phase of 0.833 dm<sup>3</sup>. The absorption rate of CO<sub>2</sub> was measured in the aqueous colloidal silica solution along the procedure similar to that reported elsewhere (24) at 0.101 MPa and 25°C, in which silica concentration of 0 ~ 31 wt% and concentration of DEA of 0–2 kmol/m<sup>3</sup> were varied at agitation speed of impeller of 50 rev/min.

## PHYSICOCHEMICAL AND RHEOLOGICAL PROPERTIES

The physicochemical and rheological properties of the aqueous colloidal silica solution, which is assumed to be nanofluid of the pseudohomogeneous phase (13), were obtained as follows:

### Solubility of CO<sub>2</sub> in the Aqueous Colloidal Silica Solution

The pressure measuring method was used by measuring the pressure difference of CO<sub>2</sub> between before and after equilibrium between gas and liquid phase similar to the procedure reported elsewhere (26) to get the solubility of CO<sub>2</sub> in the aqueous colloidal silica solution at 25°C and 0.101 MPa. The experimental procedure was duplicated that as reported in the published research (24) in detail. The solubility (C<sub>AI</sub>) of CO<sub>2</sub> in aqueous DEA solution was estimated as follows (25):

$$\begin{aligned} \text{Log}(C_{AI}/C_{Aw}) = & -(1.0406 \times 10^{-4} + 6.8433 \times 10^{-6}C_{Bo} + 1.33633 \\ & \times 10^{-8}C_{Bo}^2 - 1.1549 \times 10^{-12}C_{Bo}^3) \end{aligned}$$

### Density and Apparent Viscosity of the Aqueous Colloidal Silica Solution

The density of the aqueous silica colloid solution was measured at 25°C within 0.1 kg/m<sup>3</sup> by weighing with a pycnometer (Fisher Scientific Co., USA) and was found to be identical within experimental accuracy to the density of water. The apparent viscosity of the aqueous silica colloid solution was measured at 25°C with a Brookfield viscometer (Brookfield Eng. Lab. Inc, USA).

### Diffusivities of CO<sub>2</sub> in the Aqueous Colloidal Silica Solution

Diffusivity (D<sub>AB</sub>) of CO<sub>2</sub> in aqueous DEA (27) solution was estimated as follows:

$$D_{AB} = (1.9886 - 0.8103C_{Bo} - 0.1771 C_{Bo}^2) \times 10^{-9} \quad (13)$$

Diffusivity (D<sub>A</sub>) of CO<sub>2</sub> in the aqueous silica colloid solution was estimated from the following equation (28) corrected with the viscosity of the aqueous colloidal silica solution.

$$D_A = D_{AB}(\mu_w/\mu)^{2/3} \quad (14)$$

Diffusivity (D<sub>B</sub>) of DEA in the aqueous amine solution was obtained from the assumption that the ratio of D<sub>B</sub> to D<sub>A</sub> was equal to the ratio in water (29). The diffusivity of CO<sub>2</sub> and DEA in water at 25°C were taken as  $1.97 \times 10^{-9}$  m<sup>2</sup>/s (30) and  $6.67 \times 10^{-10}$  m<sup>2</sup>/s (27), respectively. The obtained values of the solubility, the diffusivity of CO<sub>2</sub>, the density, and the apparent viscosity of the aqueous silica colloid solution are given in Table 2.

### Reaction Rate Constant of CO<sub>2</sub> with DEA

The reaction rate constant (k<sub>2</sub>) between the reaction of CO<sub>2</sub> and DEA in aqueous solution was obtained from the following equation (27).

$$\log k_2 = 10.4493 - \frac{2274.5}{T} \quad (15)$$

### Rheological Properties of the Aqueous Colloidal Silica Solution

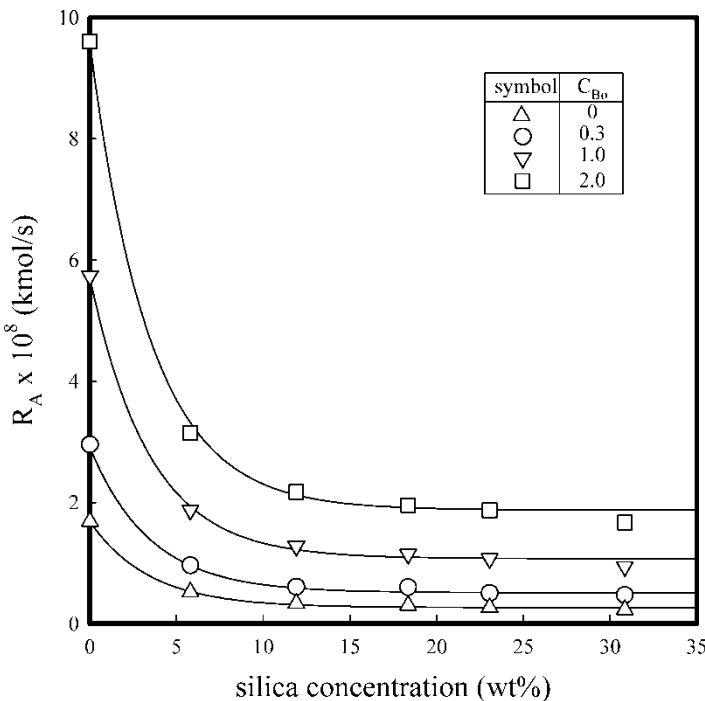
Material parameters of K, n, A and b in a power-law model such as  $\tau = K\gamma^n$  and  $N_1 = A\gamma^b$  were obtained from the measurement of  $\tau$  and N<sub>1</sub> for the change of  $\gamma$  by the parallel disk type rheometer (Ares, Rheometrics, U.S.A.) of the diameter of 0.05 m and the gap of 0.001 m. The obtained values of K, n, A and b of various concentration of silica are give in Table 2.

**Table 2.** Physicochemical and rheological properties of CO<sub>2</sub> and aqueous colloidal silica solution

| Silica<br>(wt%) | Viscosity<br>(Ns/m <sup>2</sup> ) × 10 <sup>3</sup> | Diffusivity<br>(m <sup>2</sup> /s) × 10 <sup>9</sup> | Solubility<br>(kmol/m <sup>3</sup> ) | Density<br>(kg/m <sup>3</sup> ) | Rheological properties |                                                        |       |                                      |
|-----------------|-----------------------------------------------------|------------------------------------------------------|--------------------------------------|---------------------------------|------------------------|--------------------------------------------------------|-------|--------------------------------------|
|                 |                                                     |                                                      |                                      |                                 | n                      | K × 10 <sup>3</sup> (Ns <sup>n</sup> /m <sup>2</sup> ) | b     | A (Ns <sup>n</sup> /m <sup>2</sup> ) |
| 0               | 1                                                   | 1.97                                                 | 0.039                                | 1000                            | 1.0                    | 1.0                                                    | —     | —                                    |
| 5.8             | 1.075                                               | 1.88                                                 | 0.032                                | 1039                            | 0.97                   | 1.115                                                  | 0.097 | 0.03                                 |
| 11.91           | 1.127                                               | 1.82                                                 | 0.031                                | 1082                            | 0.94                   | 1.321                                                  | 0.160 | 0.057                                |
| 18.35           | 1.191                                               | 1.77                                                 | 0.029                                | 1134                            | 0.92                   | 1.525                                                  | 0.190 | 0.082                                |
| 23.06           | 1.235                                               | 1.72                                                 | 0.028                                | 1160                            | 0.9                    | 1.67                                                   | 0.217 | 0.1                                  |
| 30.85           | 1.274                                               | 1.68                                                 | 0.027                                | 1180                            | 0.85                   | 1.95                                                   | 0.232 | 0.129                                |

### Empirical Correlation Formula for Volumetric Liquid-Side Mass Transfer Coefficient of CO<sub>2</sub>

The value of liquid-side mass transfer coefficient ( $k_L$ ) was obtained from Eq. (12) presenting the relationship between  $k_L$  and rheological behavior of the aqueous colloidal silica solution (24) such as follows:


$$k_L a d^2 / D_A = 12.56 (d^2 N \rho / \mu)^{0.48} (\mu / \mu_w)^{0.11} (1 + 39.4 D_e)^{-0.43} \quad (16)$$

where  $D_e$  is defined as the ratio of the characteristic material time to the characteristic process time as follows:

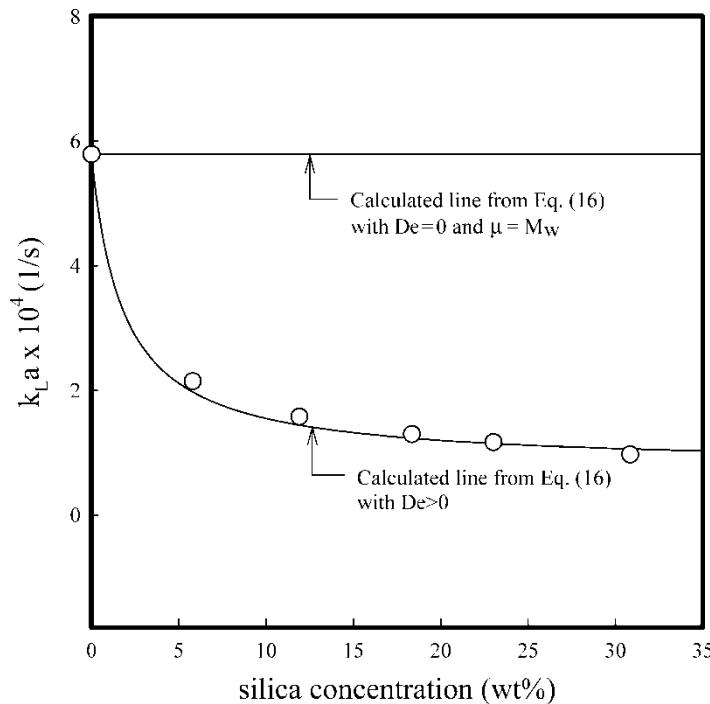
$$D_e = \lambda / t = \frac{A}{K} \gamma^{b-n-1} N \quad (17)$$

where the shear rate ( $\gamma$ ) is obtained in case of agitation of the liquid in a cylindrical vessel as follows (31):

$$\gamma = 4\pi N / n \quad (18)$$



**Figure 1.** Effect of silica concentration on absorption rate for various DEA concentrations.


## RESULTS AND DISCUSSION

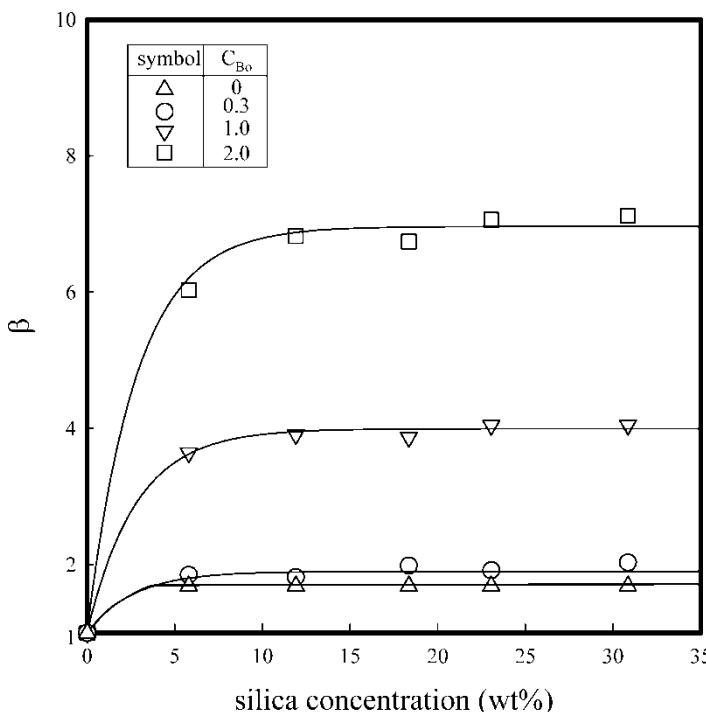
To observe the effect of elasticity of the aqueous colloidal silica solution on the chemical reaction of  $\text{CO}_2$  with DEA, the absorption rate of  $\text{CO}_2$  into the aqueous colloidal silica solution with DEA was measured according to the change of silica concentration in the range of 0–31 wt% at DEA concentration  $0 \sim 2 \text{ kmol/m}^3$  under the experimental conditions of the agitation speed of 50 rev/min with the impeller size of 0.034 m.

Figure 1 shows the plots of the absorption rate of  $\text{CO}_2$  against the silica concentration for various DEA concentrations. As shown in Fig. 1,  $R_A$  decreases with increasing silica concentration, and increases with increasing DEA concentration.

To explain the trend of  $R_A$  as shown in Fig. 1, the dependence of variables such as  $k_{La}$ ,  $\beta$ , and  $C_{Ai}$  on  $R_A$  is studied as mentioned below:

The values of  $k_{La}$  were obtained from Eq. (16) using the physicochemical and rheological properties as listed in Table 2 in the range of the silica concentration of 0–31 wt%, and plotted in Fig. 2. As shown in Fig. 2,  $k_{La}$  decreases with increasing the silica concentration. The solid line in Fig. 2 is the value of  $k_{La}$  calculated from Eq. (16), and the symbols with the open circle are the




**Figure 2.** Effect of silica concentration on  $k_{La}$  at  $d = 0.034 \text{ m}$  and  $N = 50 \text{ rpm}$ .

experimental values. As shown in Fig. 2, the experimental values approach the calculated values very well. This result comes from the fact that the viscosity and De of the aqueous colloidal silica solution increase with increasing the concentration of silica as shown in Eq. (16) and Table 2.

The numerical solutions of the simultaneous differential equations (7) and (8) were obtained by the finite element method at given concentrations of silica and DEA using the physicochemical properties listed in Table 2 and  $k_L$  from Eq. (16), from which the value of  $\beta$  was estimated from Eq. (11). Figure 3 shows the plots of  $\beta$  against the silica concentration for various DEA concentrations. As shown in Fig. 3, the values of  $\beta$  hold to be constant with increasing silica concentration and increase with increasing the DEA concentration.

The value of  $C_{Ai}$  decreases with increasing silica concentration as shown in Table 2.

From Eq. (12) and the results in Figs. 2, 3, and Table 2, it might be said that decrease of  $R_A$  with increasing silica concentration was caused mainly by  $k_{La}$  rather than elasticity of the aqueous colloidal silica solution.



**Figure 3.** Effect of silica concentration on enhancement factor for various DEA concentrations.

## CONCLUSIONS

The measured rate of chemical absorption of carbon dioxide into the aqueous colloidal silica solution of 0–31 wt% with DEA of 0–2 kmol/m<sup>3</sup> in a flat-stirred vessel with the impeller size of 0.034 m and its agitation speed of 50 rev/min at 25°C and 0.101 MPa was compared with that estimated from the model based on the film theory accompanied by chemical reaction using the value of  $k_{La}$ . The chemical absorption rate was decreased due to the reduction effect of  $k_{La}$  by elasticity of the aqueous colloidal silica solution. The value of  $k_{La}$ , which was used to estimate the enhancement factor, was obtained from the empirical equation as follow:

$$k_{La}ad^2/D_A = 12.56(d^2N\rho/\mu)^{0.48}(\mu/\mu_w)^{0.11}(1 + 39.4De)^{-0.43}$$

## NOMENCLATURE

|          |                                                                             |
|----------|-----------------------------------------------------------------------------|
| a        | specific gas-liquid area (1/m)                                              |
| $C_i$    | concentration of species, $i$ (kmol/m <sup>3</sup> )                        |
| d        | diameter of impeller (m)                                                    |
| De       | Deborah number defined as $\lambda/t$                                       |
| $D_i$    | diffusivity of species, $i$ (m <sup>2</sup> /s)                             |
| $k_2$    | reaction rate constant in reaction (1) (m <sup>3</sup> /kmol s)             |
| $k_L$    | liquid-side mass transfer coefficient of CO <sub>2</sub> in absorbent (m/s) |
| $N_1$    | primary normal stress difference (kg/m · s <sup>2</sup> )                   |
| $V_L$    | volume of the liquid phase (m <sup>3</sup> )                                |
| $k_L$    | liquid-side mass transfer coefficient of CO <sub>2</sub> in absorbent (m/s) |
| $r_A$    | reaction rate in Eq. (2) (kmol/m <sup>3</sup> · s)                          |
| $R_A$    | chemical absorption rate of CO <sub>2</sub> (kmol/s)                        |
| $R_{Ao}$ | physical absorption rate of CO <sub>2</sub> (kmol/s)                        |
| t        | the characteristic process time (sec)                                       |
| T        | temperature (°K)                                                            |
| z        | diffusion coordinate of CO <sub>2</sub> (m)                                 |
| $z_L$    | film thickness (m)                                                          |

## Greek Letters

|           |                                                     |
|-----------|-----------------------------------------------------|
| $\gamma$  | shear rate (1/s)                                    |
| $\lambda$ | the materials' characteristic relaxation time (sec) |
| $\mu$     | viscosity of liquid (Ns/m <sup>2</sup> )            |
| $\mu_w$   | viscosity of water (Ns/m <sup>2</sup> )             |
| $\rho$    | density of liquid (kg/m <sup>3</sup> )              |
| $\tau$    | shear stress (N/m <sup>2</sup> )                    |

### Subscripts

|   |                      |
|---|----------------------|
| A | CO <sub>2</sub>      |
| B | DEA                  |
| i | gas-liquid interface |

### ACKNOWLEDGMENTS

This work was supported by the Basic Research Program of the Korea Science and Engineering Foundation (KOSEF) through ARC and Brain Korea 21 Project.

### REFERENCES

1. Astarita, G., Savage, D.W., and Bisio, A. (1983) *Gas Treatment with Chemical Solvents*; John Wiley & Sons: New York.
2. Fan, J.M. and Cui, Z. (2005) Effect of acoustic standing wave in a bubble column. *Ind. Eng. Chem. Res.*, 44: 7010–7018.
3. Xu, D., Bai, Y., Fu, H., and Guo, J. (2005) Heat, mass and momentum transport behaviors in directionally solidifying blade-like castings in different electromagnetic fields described using a continuum model. *Int. J. Heat and Mass Transfer*, 48: 2219–2232.
4. Hozawa, M., Inoue, M., Sato, J., and Tsukada, T. (1991) Marangoni convection during steam absorption into aqueous LiBr solution with surfactant. *J. Chem. Eng. Jpn.*, 24: 209–214.
5. Kebelinski, P., Phillpot, S.R., Choi, S.U.S., and Eastman, J.A. (2002) Mechanisms of heat flow in suspensions of nano-sized particles. *Int. J. Heat and Mass Transfer*, 45: 855–863.
6. Kim, J.K., Jung, J.Y., and Kang, Y.T. (2006) The effect of nano-particles on the bubble absorption performance in a binary nanofluid. *Int. J. Refrigeration*, 29: 22–29.
7. Kars, R.L. and Best, R.J. (1979) The absorption of propane in slurries of activated carbon in water. *Chem. Eng. Sci.*, 17: 201–212.
8. Sada, E., Kumazawa, H., and Lee, C.H. (1984) Chemical absorption into concentrated slurry. *Chem. Eng. Sci.*, 39: 117–120.
9. Hikita, H., Ishimi, K., Ueda, K., and Koroyasu, S. (1985) Solubility and diffusivity of carbon dioxide in aqueous slurries of kaolin. *Ind. Eng. Chem. Process Des. Dev.*, 24: 261–264.
10. Quicker, G., Alper, E., and Deckwer, W.D. (1987) Effect of fine activated carbon particles on the rate of CO<sub>2</sub> absorption. *AIChE J.*, 33: 871–875.
11. Mehra, A. (1990) Gas absorption in slurries of finite-capacity microphases. *Chem. Eng. Sci.*, 45: 1525–1538.
12. Tinge, J.T. and Dringkenburg, A.A.H. (1995) The enhancement of the physical absorption of gases in aqueous activated carbon slurries. *Chem. Eng. Sci.*, 50: 937–942.
13. Mehra, A. (1995) Gas absorption in reactive slurries: Particle dissolution near gas-liquid interface. *Chem. Eng. Sci.*, 51: 461–477.

14. Ozkan, O., Calimli, A., Berber, R., and Oguz, H. (2000) Effect of inert solid particles at low concentrations on gas-liquid mass transfer in mechanically agitated reactor. *Chem. Eng. Sci.*, 55: 2723–2740.
15. Zhou, M., Cai, W.F., and Xu, C.J. (2003) A new way of enhancing transport process—the hydrid process accompanied by ultrafine particles. *Korean J. Chem. Eng.*, 20: 347–353.
16. Astarita, G., Greco, G.L., Jr., and Nicodemo, L. (1969) A phenomenological interpretation and correlation of drag reduction. *AIChE J.*, 15: 564–567.
17. Nakanoh, M. and Yoshida, F. (1980) Gas absorption by Newtonian and non-Newtonian liquids in a bubble column. *Ind. Eng. Chem. Process Des. Dev.*, 19 (1): 190–195.
18. Yagi, H. and Yoshida, F. (1975) Gas absorption by Newtonian and non-Newtonian fluids in sparged agitated vessel. *Ind. Eng. Chem. Process Des. Dev.*, 14 (4): 488–493.
19. Ranade, V.R. and Ulbrecht, J.J. (1978) Influence of polymer additives on the gas-liquid mass transfer in stirred tanks. *AIChE J.*, 24 (5): 796–803.
20. Park, S.W., Sohn, I.J., Park, D.W., and Oh, K.J. (2003) Absorption of carbon dioxide into non-Newtonian liquid. I. effect of viscoelasticity. *Sep. Sci. Technol.*, 38 (6): 1361–1384.
21. Park, S.W., Sohn, I.J., Sohn, S.G., and Kumazawa, H. (2003) Absorption of carbon dioxide into non-Newtonian liquid. II. Effect of w/o emulsion. *Sep. Sci. Technol.*, 38 (6): 3983–4007.
22. Park, S.W., Choi, B.S., Lee, B.D., and Lee, J.W. (2005) Chemical absorption of carbon dioxide into aqueous PAA solution of NaOH. *Sep. Sci. Technol.*, 40: 911–926.
23. Park, S.W., Choi, B.S., and Lee, J.W. (2006) Chemical absorption of carbon dioxide into aqueous PEO solution of monoethanolamine. *Sep. Sci. Technol.*, 40: 3261–3275.
24. Park, S.W., Lee, J.W., Choi, B.S., and Lee, J.W. (2006) Absorption of carbon dioxide into aqueous colloidal silica solution. *Sep. Sci. Technol.*, to be accepted.
25. Blanc, C.C. and Demarais, G. (1984) The reaction of CO<sub>2</sub> with diethanolamine. *Int. Chem. Eng.*, 24: 43–53.
26. Kennard, M.L. and Meisen, A. (1984) Solubility of carbon dioxide in aqueous diethanolamine solutions at elevated temperature and pressures. *J. Chem. Eng. Data.*, 29: 309–312.
27. Danckwerts, P.V. and Sharma, M.M. (1966) The Absorption of carbon dioxide into solutions of alkalis and amines. *Chem. Eng.*, 44: 244–280.
28. Cussler, E.L. (1984) *Diffusion*; Cambridge University Press: New York; Vol. 118.
29. Nijssing, R.A.T.O., Hendriksz, R.H., and Kramers, H. (1959) Absorption of CO<sub>2</sub> in jet and falling films of electrolyte solutions, with and without chemical reaction. *Chem. Eng. Sci.*, 10: 88–104.
30. Hikita, H., Asai, S., and Takatsuka, T. (1976) Absorption of carbon dioxide into aqueous sodium hydroxide and sodium carbonate-bicarbonate solutions. *Chem. Eng. J.*, 11: 131–141.
31. Metzner, A.B. and Otter, R.E. (1957) Agitation of non-Newtonian fluids. *AIChE J.*, 3: 3–10.